Sistem Analisis Tekstur Secara Statistik Orde Pertama Untuk Mengenali Jenis Telur Ayam Biasa Dan Telur Ayam Omega-3

oky dwi nurhayati

Abstract


Visually to distinguish ordinary chicken eggs and chicken eggs with omega-3 is very difficult because the physical shape and color of the eggs look the same.  From the price, chicken eggs with omega-3 is more expensive than the ordinary eggs. This aim of the research is to create an analyst system which is able to recognize type of eggs based on the texture with several steps in image processing techniques. Several image processing techniques used namely conversion of the RGB image to gray scale, remove noise with a gaussian filter, segmentation using thresholding method, and analysis with first-order statistical method that are extracted from each image of eggs. Results of the research showed that the ordinary chicken eggs and chicken eggs with omega - 3 have different statistical values

Keywords


images of chicken eggs with omega-3, pre-image processing, filtering, thresholding, first-order statistical method

References


Achmad, B, dan Kartika Firdausy, 2005, Teknik Pengolahan Citra Digital Menggunakan Delphi, Ardi Publishing, Yogyakarta.

Ahmad, U., 2005, Pengolahan Citra Digital dan Teknik Pemrogramannya, Graha Ilmu, Yogyakarta.

Arivazhagan, S., R.Newlin Shebiah, H.Sudharsan, R. Rajesh Kannan, R. Ramesh, 2013, External and Internal Defect Detection of Egg using Machine Vision, Journal of Emerging Trends in Computing and Information Sciences, Vol. 4, No. 3, March

Cholifah, S., dan Yudha P., 2013, Perancangan Sistem Identifikasi Fertilitas dan Daya Tetas Telur Itik Berbasis Digital Image Processing, ITS-paper-32067-2509100160-paper, diakses tanggal 16 februari 2015

Dehrouyeh, M.H., M. Omid, H. Ahmadi, S.S. Mohtasebi, M. Jamzad, 2010, Grading and Quality Inspection of Defected Eggs Using Machine Vision, International Journal of Advanced Science and Technology, Vol.17, April

Gonzalez, R.C and Rafael E.W, 2008, Digital Image Processing, Prentice-Hall, Inc., United State, America.

Khabibulloh, M. A., A. Kusumawardhani, D. Y. Pratama, 2012, Rancang Bangun Sistem Deteksi Embrio Pada Telur Menggunakan Webcam, Jurnal Teknik POMITS Vol. 1, No. 1, pp.1-6, 2012

Sancoko, R.A.A., dan E.Puspita, 2011, Pendeteksi Embrio Dalam telur Menggunakan Metode Image Processing, digilib.its.ac.id/public/ITS-paper-23276-2408100073-Paper.pdf diakses 16 Februari 2015

Zhu, Z., dan Meihu Ma, 2011, The identification of white fertile eggs prior to incubation based on machine vision and least square support vector machine, African Journal of Agricultural Research Vol. 6(12), pp. 2699-2704, 18 June


Full Text: PDF

Refbacks

  • There are currently no refbacks.


Jumlah Pengunjung :

Web
Analytics

View My Stats